A REDUCIBLE CHARACTERISTIC VARIETY IN TYPE A

GEORDIE WILLIAMSON

Abstract

We show that simple highest weight modules for $\mathfrak{s l}_{12}(\mathbb{C})$ may have reducible characteristic variety. This answers a question of Borho-Brylinski and Joseph from 1984. The relevant singularity under Beilinson-Bernstein localization is the (in)famous Kashiwara-Saito singularity. We sketch the rather indirect route via the p-canonical basis, W-graphs and decomposition numbers for perverse sheaves that led us to examine this singularity.

Dedicated to David Vogan on the occasion of his $60^{\text {th }}$ birthday.

1. Introduction

Let $G \supset B \supset T$ denote respectively a complex reductive group, a Borel subgroup and maximal torus. Let W denote its Weyl group, $X=G / B$ the flag variety and $T^{*} X$ its cotangent bundle. Given $x \in W$ we denote by C_{x} the corresponding Schubert cell and $T_{x}^{*} X \subset T^{*} X$ its conormal bundle. Let D_{X} denote the sheaf of algebraic differential operators on X and by \mathcal{L}_{y} the IC extension of the trivial local system on C_{y}. We can write the characteristic cycle of \mathcal{L}_{y} as

$$
C C\left(\mathcal{L}_{y}\right)=\sum_{x \in W} m_{x, y}\left[\overline{T_{x}^{*} X}\right]
$$

We have $m_{x, y} \in \mathbb{Z}_{\geq 0}$ and $m_{x, y}=0$ unless $x \leq y$ in the Bruhat order. The calculation of the multiplicities $m_{x, y}$ is an important and difficult problem. The question we address in this note is:

Question 1.1. (See BB85, Conjecture 4.5] and [Jos84, §10.2]) Suppose that $G=$ $S L_{n}(\mathbb{C})$. Is $m_{x, y}=0$ if $x \neq y$ and x and y lie in the same two-sided Kazhdan-Lusztig cell?

This question is equivalent to asking whether the characteristic variety of a simple highest weight module for $\mathfrak{s l}_{n}(\mathbb{C})$ is irreducible BB85, Proposition 6.9]. (A sketch: if $\pi: T^{*}(G / B) \rightarrow \mathfrak{s l}_{n}(\mathbb{C})^{*}$ denotes the moment map then the characteristic variety of the global sections of \mathcal{L}_{y} (a simple highest weight module) agrees with the image of the characteristic variety of \mathcal{L}_{y} under π BB85, Corollary 1.5]. The condition on two-sided cells occurs because if $x<_{L R} y$ ($\leq_{L R}$ denotes the KazhdanLusztig two-sided cell preorder) then $\pi\left(\overline{T_{x}^{*} G / B}\right)$ has strictly smaller dimension than $\pi\left(\overline{T_{y}^{*} G / B}\right)$ and hence cannot contribute a reducible component, because characteristic varieties of simple modules are equidimensional Gab82.) It is known that reducible characteristic varieties occur in other types (e.g. $\left.B_{2}, B_{3}, C_{3}\right)$ thanks to calculations of Kashiwara and Tanisaki KT84 and Tanisaki Tan88.

Kazhdan and Lusztig conjectured (still for $G=S L_{n}(\mathbb{C})$) that the characteristic varieties of all \mathcal{L}_{y} are irreducible KL80a (that is, that $m_{x, y}=0$ if $x \neq y$). Of course this would imply an affirmative answer to the above question. However Kashiwara
and Saito KS97 showed that their conjecture was true if $n<8$ but false for $n \geq 8$. They discovered a singularity (the Kashiwara-Saito singularity) which occurs as a normal slice to a Schubert variety in the flag variety of $S L_{8}(\mathbb{C})$, and for which the characteristic variety is reducible. In their example x and y do not lie in the same two-sided cell, and hence do not provide an example of a reducible characteristic variety of a highest weight module.

In this note we give two permutations $x \leq y$ in S_{12} which lie in the same right cell and such that a normal slice to the Schubert variety corresponding to y along the Schubert cell corresponding to x is isomorphic to the Kashiwara-Saito singularity. This implies that $m_{x, y} \neq 0$, and hence that Question 1.1 has a negative answer.
1.1. Structure of the paper. In $\S 2$ we discuss the p-canonical basis and prove a result relating characteristic cycle multiplicities and the p-canonical basis. This result is a simple consequence of an observation of Vilonen and the author VW12. We then discuss how positivity properties of the p-canonical basis and computer code of Howlett-Nguyen allows one to narrow the search for potential counterexamples. (Indeed, with $12!=479001600$ Schubert varieties in the flag variety of $G L_{12}$, the challenge is in the finding rather than the verifying!) In $\delta 3$ we give the singularity in the $G L_{12}$ flag variety and perform a straightforward calculation to obtain the Kashiwara-Saito singularity.
1.2. Comments on the literature. In Mel93 a proof is proposed for the irreducibility of characteristic varieties in type A. As we have already remarked, this would imply that Question 1.1 has a positive answer. The results of this paper contradict Mel93, Proposition 3.2] and it is not clear to the author how this proposition follows from the results of Jos84. A statement equivalent to Mel93, Proposition 3.2] is made in the remark on page 54 of BB85.
1.3. Acknowledgements. This paper also owes a significant debt to Leticia Barchini who asked me repeatedly about Question 1.1, and answered questions during and following a visit to the MPI last year. Thanks also to Peter Trapa for some explanations and Anna Melnikov, Yoshihisa Saito and Toshiyuki Tanisaki for useful correspondence. The examples were found using Howlett and Nguyen's software HN13 for magma BCP97 which produces the irreducible W-graphs for the symmetric group, implementing an algorithm described in HN12, §6].

During a visit to MIT last year David Vogan asked me whether the results of VW12 could produce new examples of reducible characteristic cycles, and asked about Question 1.1. It is a pleasure to dedicate this paper to David, thank him for his many wonderful contributions to Lie theory and to wish him a happy birthday!

2. Motivation from modular representation theory

In this section we sketch the route which led us to consider the singularity in §3.5. We have tried to provide enough details and references that a motivated reader could adapt these techniques to find other interesting (counter)examples. Most of the ideas are already contained in Wil12, which has more detail than the discussion below.
2.1. The p-canonical basis. Let G, B, T be as in the introduction. Let W denote the Weyl group, S its simple reflections, \leq its Bruhat order and ℓ its length function. Consider the flag variety G / B with its stratification by B-orbits (the Schubert stratification):

$$
G / B=\bigsqcup_{w \in W} C_{w}
$$

Fix a field \mathbb{k} of characteristic $p \geq 0$ and let $D_{(B)}^{b}(G / B ; \mathbb{k})$ denote the bounded derived category of constructible sheaves on G / B which are constructible with respect to the Schubert stratification. For $w \in W$ denote by $\mathbf{I C}(w ; \mathbb{k})$ the intersection cohomology sheaf and $\mathcal{E}(w ; \mathbb{k})$ the parity sheaf (for the constant pariversity) JMW09, Wil12 corresponding to $\overline{C_{w}}$. We will drop the \mathbb{k} from the notation if it is clear from the context. If \mathbb{k} is of characteristic 0 then $\mathcal{E}(w ; \mathbb{k})=\mathbf{I C}(w ; \mathbb{k})$.

Let \mathcal{H} denote the Hecke algebra of (W, S). It is a free $\mathbb{Z}\left[v^{ \pm 1}\right]$-module with basis $\left\{H_{w} \mid w \in W\right\}$ and multiplication determined by

$$
H_{s} H_{w}= \begin{cases}H_{s w} & \text { if } \ell(s w)>\ell(w) \\ \left(v^{-1}-v\right) H_{w}+H_{s w} & \text { if } \ell(s w)<\ell(w)\end{cases}
$$

Let $\left\{\underline{H}_{w}\right\}$ denote the Kazhdan-Lusztig or "canonical" basis of \mathcal{H}. We use the normalizations of Soe97. For example $\underline{H}_{s}=H_{s}+v H_{i d}$.

Given a finite dimensional \mathbb{Z}-graded vector space $V=\bigoplus V^{i}$ let

$$
\operatorname{ch} V=\sum \operatorname{dim}_{i \in \mathbb{Z}} V^{-i} v^{i} \in \mathbb{Z}\left[v^{ \pm 1}\right]
$$

denote its Poincaré polynomial. Given $\mathcal{F} \in D_{(B)}^{b}(G / B ; \mathbb{k})$ define

$$
\operatorname{ch} \mathcal{F}=\sum_{x \in W} \operatorname{ch} H^{*}\left(\mathcal{F}_{x}\right) v^{-\ell(x)} H_{x} \in \mathcal{H}
$$

where \mathcal{F}_{x} denotes the stalk of \mathcal{F} at the point $x B / B \in C_{x} \subset G / B$. It is a classical theorem of Kazhdan and Lusztig KL80b (see also Spr82) that if \mathbb{k} is of characteristic zero then

$$
\begin{equation*}
\operatorname{ch} \mathbf{I C}(w ; \mathbb{k})=\underline{H}_{w} \tag{2.1}
\end{equation*}
$$

For any $w \in W$ we define

$$
\underline{p}_{w}:=\operatorname{ch} \mathcal{E}(w ; \mathbb{k}) .
$$

(One can show that ${ }^{p} \underline{H}_{w}$ only depends on the characteristic p of \mathbb{k}, which explains the notation.) We call the $\left\{{ }^{p} \underline{H}_{w}\right\}$ the p-canonical basis for reasons which the following proposition should make clear:

Proposition 2.1.

i) ${ }^{p} \underline{H}_{w}=H_{w}+\sum_{x<w}{ }^{p} h_{x, w} H_{x}$ with ${ }^{p} h_{x, w} \in \mathbb{Z}_{\geq 0}\left[v^{ \pm 1}\right]$ (hence $\left\{{ }^{p} \underline{H}_{w} \mid w \in W\right\}$ is a basis),
ii) ${ }^{p} \underline{H}_{w}=\sum^{p} m_{x, w} \underline{H}_{x}$ for self-dual ${ }^{p} m_{x, w} \in \mathbb{Z}_{\geq 0}\left[v^{ \pm 1}\right]$,
iii) if ${ }^{p} m_{x, w}$ are as in (ii) then ${ }^{p} m_{x, w}=0$ unless $\mathcal{L}(x) \supset \mathcal{L}(w)$ and $\mathcal{R}(x) \supset$ $\mathcal{R}(w)$ where \mathcal{L} and \mathcal{R} denote left and right descent sets,
iv) ${ }^{p} \underline{H}_{x}{ }^{p} \underline{H}_{y}=\sum^{p} \mu_{x y}^{z} \underline{H}_{z}$ for self-dual ${ }^{p} \mu_{x, y}^{z} \in \mathbb{Z}_{\geq 0}\left[v^{ \pm 1}\right]$,
v) for $p \gg 0,{ }^{p} \underline{H}_{w}={ }^{0} \underline{H}_{w}=\underline{H}_{w}$.

Sketch of proof. By definition the parity sheaf $\mathcal{E}(w)$ is supported on $\overline{C_{w}}$ and its restriction to C_{w} is isomorphic to a shifted constant sheaf. (i) now follows easily from the definition of ch.

Each $\mathcal{E}\left(w ; \mathbb{F}_{p}\right)$ admits a lift $\mathcal{E}\left(w ; \mathbb{Z}_{p}\right)$, a parity sheaf with coefficients in \mathbb{Z}_{p}. Then $\mathcal{E}\left(w, \mathbb{Z}_{p}\right) \otimes_{\mathbb{Z}_{p}} \mathbb{Q}_{p}$ is a parity sheaf with coefficients in \mathbb{Q}_{p}, and is hence isomorphic to a direct sum of intersection cohomology complexes. (ii) now follows from (2.1) and the fact that $\mathcal{E}\left(w ; \mathbb{F}_{p}\right), \mathcal{E}\left(w, \mathbb{Z}_{p}\right)$ and $\mathcal{E}\left(w, \mathbb{Z}_{p}\right) \otimes_{\mathbb{Z}_{p}} \mathbb{Q}_{p}$ all have the same character (see Wil12, Theorem 3.10]).

For fixed w the parity sheaf $\mathcal{E}\left(w ; \mathbb{F}_{p}\right)$ may be obtained via pull-back from the partial flag variety G / P where $P \supset B$ is the parabolic subgroup determined by $\mathcal{R}(w) \subset S$ (see JMW09, Proposition 4.10]). Hence $\mathcal{R}(x) \supset \mathcal{R}(w)$ as claimed. The statement for left descent sets follows because ${ }^{p} m_{x, w}={ }^{p} m_{x^{-1}, w^{-1}}$ by Wil12, $\S 3$ eq. (4)].

Each parity sheaf admits a lift to the B-equivariant derived category $D_{B}^{b}(G / B, \mathbb{k})$ where there is a convolution formalism categorifying the multiplication in the Hecke algebra. (iv) then follows because the convolution of two parity sheaves is isomorphic to a direct sum of shifts of parity sheaves JMW09, Theorem 4.8].

Finally (v) follows from (2.1) and JMW09, Proposition 2.41] which asserts that $\mathcal{E}\left(w ; \mathbb{F}_{p}\right)=\mathbf{I C}\left(w ; \mathbb{F}_{p}\right)$ for all but finitely many primes p.

Warning 2.2. The p-canonical basis depends on the root system of G, not just on its Weyl group. (For example the 2-canonical basis differs in types B_{3} and C_{3}.) Hence one should think about the p-canonical basis as a basis of the Hecke algebra attached to a root system or Cartan matrix rather than a Coxeter system. Kashiwara and Saito have observed the same phenomenon for characteristic cycles KT84 Example 5.4].
2.2. The p-canonical basis and decomposition numbers. We briefly recall the notion of a decomposition number for perverse sheaves. An excellent reference is Jut09.

Let X denote a complex variety, $Z \subset X$ a locally closed smooth subvariety, and \mathcal{L} a local system of free \mathbb{Z}-modules on X. One may consider the intersection cohomology extension $\| \mathbf{I C}(\bar{Z} ; \mathcal{L})$. It is a perverse sheaf with \mathbb{Z}-coefficients on X. One has

$$
\mathbf{I C}(\bar{Z} ; \mathcal{L}) \otimes_{\mathbb{Z}} \mathbb{Q}=\mathbf{I C}\left(\bar{Z} ; \mathcal{L} \otimes_{\mathbb{Z}} \mathbb{Q}\right)
$$

and so $\mathbf{I C}(\bar{Z} ; \mathcal{L})$ can be thought of as a \mathbb{Z}-form of $\mathbf{I C}(\bar{Z} ; \mathcal{L} \otimes \mathbb{Q})$. In general,

$$
\mathbf{I C}(\bar{Z} ; \mathcal{L}) \otimes_{\mathbb{Z}}^{L} \mathbb{F}_{p} \in D_{c}^{b}\left(X ; \mathbb{F}_{p}\right)
$$

is perverse but no longer simple. The decomposition matrix encodes the JordanHölder multiplicities of the simple perverse sheaves occurring in $\mathbf{I C}(\bar{Z} ; \mathcal{L}) \otimes_{\mathbb{Z}}^{L} \mathbb{F}_{p}$.

In this paper we will be concerned with the flag variety together with its Schubert stratification, as in $\$ 2.1$. In this case all the strata are simply connected and the decomposition matrix takes the form $\left(d_{y, x}\right)_{y, x \in W}$ where

$$
d_{y, x}:=\left[\mathbf{I C}\left(\overline{C_{y}} ; \mathbb{Z}\right) \otimes_{\mathbb{Z}} \mathbb{F}_{p}: \mathbf{I C}\left(\overline{C_{x}} ; \mathbb{F}_{p}\right)\right]
$$

The relation between the characters of the parity sheaves (i.e. the p-canonical basis) and the decomposition matrix is subtle. For example, recent papers of Achar and Riche AR14a, AR14b prove that knowledge of the p-canonical basis gives (a q-refinement of) the decomposition matrix for perverse sheaves on the Langlands dual flag variety.

[^0]Here we will be concerned with a much more limited but simpler relationship. Roughly it says that the first time the p-canonical basis differs from the canonical basis corresponds to the first non-trivial decomposition number (see Proposition 2.1 and above for notation):

Proposition 2.3. Fix $y \in W$ and suppose that $x<y$ is maximal in the Bruhat order such that ${ }^{p} m_{x, y} \neq 0$. If ${ }^{p} m_{x, y} \in \mathbb{Z}$ then $d_{y, x}={ }^{p} m_{x, y}$.

Proof. Fix x and y are in the proposition. Set

$$
X=\bigsqcup_{z \geq x} B z B / B, \quad Z=B x B \subset X, \quad U=X \backslash U
$$

and denote by i (resp. j) the closed (resp. open) embedding of Z (resp. U) into X. Note that X is open in G / B.

For $\mathbb{k} \in\left\{\mathbb{F}_{p}, \mathbb{Z}_{p}, \mathbb{Q}_{p}\right\}$ let $\mathbf{I C}_{\mathbb{k}}$ (resp. $\mathcal{E}_{\mathbb{k}}$) denote the intersection cohomology (resp. parity) sheaf corresponding to the stratum $B y B / B \subset X$. We have $\mathcal{E}_{\mathbb{Q}_{p}} \cong \mathbf{I C}_{\mathbb{Q}_{p}}$ and our assumptions guarantee that \mathcal{E} is perverse with

$$
\mathbf{I C}_{\mathbb{k} \mid U} \cong \mathcal{E}_{\mathbb{k} \mid U}
$$

Hence we need to examine the difference between $\mathbf{I} \mathbf{C}_{\mathbb{F}_{p}}$ and $\mathcal{E}_{\mathbb{F}_{p}}$ over the closed stratum Z.

Our main tool will be JMW09, Lemma 2.18] which gives a bijection between isomorphism classes of extensions of a fixed \mathcal{F} on U to X, and isomorphism classes of distinguished triangles on Z of the form

$$
\begin{equation*}
A \rightarrow i^{*} j_{*} \mathcal{F} \rightarrow B \xrightarrow{[1]} \tag{2.2}
\end{equation*}
$$

If \mathcal{F}^{\prime} is such an extension then A and B are given by

$$
\begin{equation*}
i^{*} \mathcal{F}^{\prime} \cong A \quad \text { and } \quad i^{!} \mathcal{F}^{\prime} \cong B[-1] \tag{2.3}
\end{equation*}
$$

Let us examine the triangle corresponding to the extension $\mathcal{E}_{\mathbb{Z}_{p}}$ of $\mathbf{I C}_{\mathbb{Z}_{p} \mid U}$. It has the form

$$
\begin{equation*}
A \rightarrow i^{*} j_{*}\left(\mathbf{I} \mathbf{C}_{\mathbb{Z}_{p} \mid U}\right) \rightarrow B \xrightarrow{[1]} \tag{2.4}
\end{equation*}
$$

Because Z is contractible we can view (2.4) as a distinguished triangle of $\mathbb{Z}_{p^{-}}$ modules. By (2.3) and the fact that \mathcal{E} is a parity sheaf we deduce:
(1) $H^{m}(A)$ and $H^{m}(B)$ are free \mathbb{Z}_{p}-modules;
(2) $H^{m}(A)=0$ if $m-\ell(y)$ is odd, and $H^{m}(B)=0$ if $m-\ell(y)$ is even.

The assumptions of the proposition and (2.3) guarantee that
(3) $H^{m}(A)$ vanishes for $m>-\ell(x)$ and $H^{m}(B)$ vanishes for $m<-\ell(x)-1$;
(4) $H^{-\ell(x)}(A)$ is free of rank ${ }^{p} m_{x, y}$ (in particular $\ell(y)-\ell(x)$ is even).

Because \mathbb{Z}_{p} is hereditary, each of the terms in (2.4) is isomorphic to its cohomology. Hence we can turn the triangle and rewrite it as

$$
H^{*}(B)[-1] \rightarrow H^{*}(A) \rightarrow H^{*}\left(i^{*} j_{*} \mathcal{F}\right) \stackrel{[1]}{\longrightarrow}
$$

By (3) above the only non-zero map component of the first map is

$$
\alpha: H^{-\ell(x)-1}(B) \rightarrow H^{-\ell(x)}(A)
$$

Because \mathcal{E} is indecomposable, α does not map any summand of $H^{-\ell(x)-1}(B)$ isomorphically onto a summand of $H^{-\ell(x)}(A)$ by JMW09, Lemma 2.21]. In other words, $\alpha \otimes_{\mathbb{Z}_{p}} \mathbb{F}_{p}=0$. On the other hand, we have

$$
\mathcal{E} \otimes_{\mathbb{Z}_{p}} \mathbb{Q}_{p} \cong \mathbf{I C}_{\mathbb{Q}_{p}} \oplus \mathbf{I C}(Z)^{\oplus\left({ }^{p} m_{x, y}\right)}
$$

and hence α is an isomorphism over \mathbb{Q}_{p}. In other words, ker $\alpha=0$ and the domain and codomain of α are free of the same rank.

By the long exact sequence of cohomology we deduce that:

$$
\begin{aligned}
& H^{m}\left(i^{*} j_{*} \mathbf{I C}_{\mathbb{F}_{p} \mid U}\right)= \begin{cases}H^{m}(A) \otimes \mathbb{F}_{p} & \text { if } m<\ell(x)-1, \\
H^{-\ell(x)}(A) \otimes \mathbb{F}_{p} & \text { if } m=-\ell(x)-1 \text { or } m=-\ell(x), \\
H^{m}(B) \otimes \mathbb{F}_{p} & \text { if } m>-\ell(x) .\end{cases} \\
& H^{m}\left(i^{*} j_{*} \mathbf{I C}_{\mathbb{Q}_{p} \mid U}\right)= \begin{cases}H^{m}(A) \otimes \mathbb{F}_{p} & \text { if } m<\ell(x)-1, \\
0 & \text { if } m=-\ell(x)-1 \text { or } m=-\ell(x), \\
H^{m}(B) \otimes \mathbb{F}_{p} & \text { if } m>-\ell(x) .\end{cases}
\end{aligned}
$$

By the Deligne construction BBD82, Proposition 2.1.11] we have

$$
i^{*} \mathbf{I} \mathbf{C}_{\mathbb{k}}=i^{*} \tau_{<-\ell(x)} j_{*} \mathbf{I} \mathbf{C}_{\mathbb{k}}=\tau_{<-\ell(x)} i^{*} j_{*} \mathbf{I} \mathbf{C}_{\mathbb{k}}
$$

where $\tau_{<m}$ denotes truncation. Hence if χ denotes the Euler characteristic at any point in Z we have

$$
\chi\left(\mathbf{I C}_{\mathbb{F}_{p}}\right)=\chi\left(\mathbf{I} \mathbf{C}_{\mathbb{Q}_{p}}\right)-(-1)^{-\ell(x)}\left({ }^{p} m_{x, y}\right) .
$$

Now we are done: if we write

$$
\left[\mathbf{I C}_{\mathbb{Z}_{p}} \otimes_{\mathbb{Z}_{p}}^{L} \mathbb{F}_{p}\right]=\left[\mathbf{I} \mathbf{C}_{\mathbb{F}_{p}}\right]+a[\mathbf{I} \mathbf{C}(Z)]
$$

in the Grothendieck group of \mathbb{F}_{p}-perverse sheaves on X then taking Euler characteristics over Z yields $a={ }^{p} m_{x, y}$ as claimed.

As in the introduction we write $m_{x, y}$ for the the characteristic cycle multiplicities. The following is an immediate consequence of the previous proposition, and VW12, Theorem 2.1].
Corollary 2.4. Suppose that $x<y$ are as in the previous proposition. Then

$$
m_{x, y} \geq^{p} m_{x, y}
$$

2.3. Searching for a counter-example. Consider the following variant of Question 1.1 (with notation as in Proposition 2.1):
Question 2.5. Suppose that $G=S L_{n}(\mathbb{C})$ and let p be a prime. Is ${ }^{p} m_{x, y}=0$ if $x \neq y$ and x and y lie in the same two-sided cell?

It will become clear below that a positive answer to Question 1.1 implies a positive answer to Question 2.5. Question 2.5 is also important for modular representation theory, with connections to Lusztig's conjecture around the the Steinberg weight Soe00], amongst other things.

One can show (using Soergel calculus EW13 or Schubert calculus HW14) that the counter-example in $\oint 3$ also gives a counter-example to Question 2.5. We found the examples by pursuing a naive idea, which is the main theme of Wil12: the p-canonical basis has remarkable positivity properties (summarized in Proposition 2.1. and these positivity properties are enough to rule out many potential counterexamples.

Asume that W is an arbitrary Weyl group. For any left cell $C \subset W$ we can consider the corresponding cell module

$$
M_{C}=\bigoplus_{x \in C} \mathbb{Z}\left[v^{ \pm 1}\right] M_{x}:=\bigoplus_{x \leq_{L} C} \mathbb{Z}\left[v^{ \pm 1}\right] \underline{H}_{x} /\left(\bigoplus_{x<L_{C} C} \mathbb{Z}\left[v^{ \pm 1}\right] \underline{H}_{x}\right)
$$

The \mathcal{H}-module structure in the basis $\left\{M_{x}\right\}$ is encoded in the W-graph of C. Fix a prime p and assume that the p-canonical basis satisfies:

$$
\begin{equation*}
\text { for all } y \in C \text { if }{ }^{p} m_{x, y} \neq 0 \text { then } x \leq_{L} y . \tag{2.5}
\end{equation*}
$$

Then we may define ${ }^{p} M_{y}$ as the image of ${ }^{p} \underline{H}_{y}$ in M_{C} and obtain in this way a p canonical basis for the cell module M_{C}. By Proposition 2.1 it satisfies the following properties:
(1) (positive upper-triangularity) we have

$$
{ }^{p} M_{y}=M_{y}+\sum_{C \ni x<y}{ }^{p} m_{x, y} M_{x} \text { with }{ }^{p} m_{x, y} \in \mathbb{Z}_{\geq 0}\left[v^{ \pm 1}\right] \text { self-dual; }
$$

(2) (positive structure constants) for any $x \in W$,

$$
{ }^{p} \underline{H}_{x} \cdot{ }^{p} M_{y} \in \bigoplus_{z \in C} \mathbb{Z}_{\geq 0}\left[v^{ \pm 1}\right]\left({ }^{p} M_{z}\right)
$$

Example 2.6. Suppose that W is of type B_{2} with simple reflections s, t. Consider the left cell $C=\{s, t s, s t s\}$. The W-graph is:

$$
\{s\}-\{t\}-\{s\}
$$

In this case there are two possible bases for M_{C} satisfying (1) and (2). The first is the Kazhdan-Lusztig basis $\left\{M_{x}\right\}$. The second is the basis $\left\{M_{x}^{\prime}\right\}$ with $M_{x}^{\prime}=M_{x}$ for $x \in\{s, t s\}$ and $M_{s t s}^{\prime}:=M_{s t s}+M_{s}$. In this case M^{\prime} agrees with the image of the 2-canonical basis for B_{2} (for an appropriate choice of long and short root).

Now assume that W is of type A_{n-1}. In this case two sided cells are parametrized by partitions λ of n. Also, all left cells in fixed two sided are irreducible and afford isomorphic (based) representations of the Hecke algebra \mathcal{H}.
Lemma 2.7. Let λ be a partition of n and $E_{\lambda} \subset W$ the corresponding two-sided cell. Then there exists a left cell $C \subset E_{\lambda}$ satisfying (2.5).

Sketch of proof. Let w_{λ} denote the longest element of the standard parabolic subgroup $W_{\lambda} \subset W$ determined by λ. Then $w_{\lambda} \in E_{\lambda}$. We claim that the left cell C containing w_{λ} satisfies (2.5). Firstly, ${ }^{p} \underline{H}_{w_{\lambda}}=\underline{H}_{w_{\lambda}}$ by (i) and (iii) of Proposition 2.1 and a simple induction then shows that

$$
{ }^{p} \underline{H}_{y}=\sum_{x \leq{ }_{L} w_{\lambda}}{ }^{p} m_{x, y} \underline{H}_{x} .
$$

for all $y \in C$. Hence (2.5) holds.
It follows that any left cell representation in type A admits a p-canonical basis satisfying the above positive conditions. One can apply computer searches in order to isolate potential counter-examples and then use Soergel calculus EW13 or Schubert calculus HW14 to check whether one has indeed found a counter-example.

In order to implement this approach one needs the W-graphs of the left cell representations in type A. These are provided by the wonderful code of Howlett and Nguyen HN13 for magma BCP97.

Remark 2.8.
(1) Using the recent results of Achar-Riche AR14a, AR14b one can show that if there is a counter-example for a left cell corresponding to λ then there is also a counter-example for the left cell corresponding to the transposed partition λ^{t}. This allows one to roughly halve the number of left cells which one needs to consider. Experimentally, the above positivity properties are more restrictive in left cells corresponding to partitions "near the top" of the dominance order. (For example for S_{4} there is only one solution for the left cell corresponding to the partition $(3,1)$, whereas there are two for the partition (2, 1, 1).)
(2) Lusztig has given a beautiful description of the J-ring for a fixed two-sided cell in S_{n} as a (based) matrix ring. Using this result one can show that if the p-canonical basis is trivial (i.e. equal to the image of the KazhdanLusztig basis) in a fixed left cell then Question 2.5 has a positive answer for that two-sided cell.
(3) The above methods yielded another counter-example to Question 2.5, this time in $G L_{13}$:

$$
\begin{gathered}
x=12132156543765438798765 b a 98 c \\
y=121321546543765438798765 a b a 9876 c b a 98
\end{gathered}
$$

Here we write x and y as words in the simple transpositions $1, \ldots 9, a, b, c$ of S_{13}. Yoshihisa Saito has informed me that in this case one also obtains the Kashiwara-Saito singularity as a normal slice.

3. Two realisations of the Kashiwara-Saito singularity

3.1. Notation. Fix a positive integer $n \geq 1$.

Let S_{n} denote the symmetric group, which we regard as permutations of the set $\{1, \ldots, n\}$. We view S_{n} as a Coxeter group with Coxeter generators the simple transpositions $s_{i}=(i, i+1)$ for $1 \leq i \leq n-1$. We write ℓ for the length function on S_{n} and \leq for the Bruhat order.

We will usually write permutations in "string notation" i.e. we write $x=$ $x_{1} x_{2} \ldots x_{n}$ to mean that x is the permutation in S_{n} which sends $1 \mapsto x_{1}, 2 \mapsto x_{2}$ etc. To avoid confusion when using string notation we extend our alphabet of digits $1, \ldots, 9$ by the letters $a, b \ldots$ with $a=10, b=11 \ldots$.

Let $G=G L_{n}(\mathbb{C})$ denote the general linear group of invertible complex matrices. Given $x=x_{1} x_{2} \ldots x_{n} \in S_{n}$ we will denote by \dot{x} the corresponding permutation matrix. That is $\dot{x}\left(e_{i}\right)=e_{x_{i}}$ if $e_{1}, e_{2}, \ldots, e_{n}$ denotes the standard basis of \mathbb{C}^{n}.

Let $B \subset G$ denote the Borel subgroup of upper triangular matrices. Let G / B denote the flag variety. Given $y \in S_{n}$ we denote by

$$
C_{y}=B \dot{y} B / B \subset G / B
$$

its Schubert cell and by Z_{y} the corresponding Schubert variety:

$$
Z_{y}:=\overline{B \dot{y} B / B}=\overline{C_{y}}
$$

3.2. Equations for slices to Schubert cells. We recall how to explicitly write down equations for slices to Schubert cells in Schubert varieties. Everything here can be checked reasonably easily by hand with the (possible) exception of the fact that the equations (3.1) are complete.

Let $U_{-}, U \subset G L_{n}(\mathbb{C})$ the subgroups of unipotent lower and upper triangular matrices respectively. The natural map $U_{-} \rightarrow G / B$ is an open immersion, giving a coordinate patch isomorphic to $\mathbb{A}\binom{n}{2}$ around the base point $B \in G / B$. Hence for any $x \in S_{n}$ the natural map $\pi: \dot{x} U_{-} \rightarrow G / B$ gives a coordinate patch around $\dot{x} B \in G / B$. For a permutation $x=x_{1} \ldots x_{n}$ we have:

$$
\dot{x} U_{-}=\left\{g=\left(g_{i, j}\right) \in G L_{n}(\mathbb{C}) \mid g_{x_{i}, i}=1 \text { and } g_{x_{i}, j}=0 \text { for } j>i\right\}
$$

For $y \in S_{n}$ the inverse image $\pi^{-1}\left(Z_{y}\right) \subset \dot{x} U_{-}$is given by the equations (see Ful92, WY08, §3.2] and [WY12, §2.2]):

$$
\begin{equation*}
\operatorname{rank}\left(\left(g_{i, j}\right)_{a \leq i \leq n, 1 \leq j \leq b}\right) \leq \operatorname{rank}\left(\left(\dot{y}_{i, j}\right)_{a \leq i \leq n, 1 \leq j \leq b}\right) \quad \text { for all } \quad 1 \leq a, b \leq n . \tag{3.1}
\end{equation*}
$$

We have

$$
\pi^{-1}\left(C_{x}\right):=\left\{g \in \dot{x} U_{-} \mid g_{i, j}=0 \text { for } i>x_{j}\right\}
$$

Hence if we set

$$
N_{x}=\left\{g \in \dot{x} U_{-} \mid g_{i, j}=0 \text { for } i<x_{j}\right\}
$$

then N_{x} is a normal slice to C_{x} in $\dot{x} U_{-}$. Hence the singularity of Z_{y} along C_{x} is given by $N_{x} \cap \pi^{-1}\left(Z_{y}\right)$ which is given by intersecting the linear equations describing N_{x} with the equations (3.1).

Exercise 3.1. Perhaps an example will help decipher the notation. Consider $n=4$ and let $x=2143$ and $y=4231$. We have

$$
N_{x}=\left\{\left.\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
a & b & 0 & 1 \\
c & d & 1 & 0
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{C}\right\}
$$

and the rank conditions (3.1) reduce in this case to the single equation $a d-b c=0$.
3.3. The Kashiwara-Saito singularity. Let $M_{2}(\mathbb{C})$ denote the space of 2×2 complex matrices with coefficients in \mathbb{C}. Consider the space S of matrices $M_{i} \in$ $M_{2}(\mathbb{C})$ for $i \in \mathbb{Z} / 4 \mathbb{Z}$ satisfying the two conditions:

$$
\begin{gather*}
\operatorname{det} M_{i}=0 \text { for } i \in \mathbb{Z} / 4 \mathbb{Z} \tag{3.2}\\
M_{i} M_{i+1}=0 \text { for } i \in \mathbb{Z} / 4 \mathbb{Z} . \tag{3.3}
\end{gather*}
$$

Clearly S is an affine variety. One can show that it is irreducible of dimension 8. We call S (or more precisely the singularity of S at $0:=(0,0,0,0) \in S$) the Kashiwara-Saito singularity. In KS97] it is shown that the conormal bundle to 0 is a component of the characteristic cycle of the intersection cohomology D-module on S. In particular, the characteristic cycle is reducible.
3.4. Realisation in $G L_{8}$. Now let $n=8$ and consider the permutations

$$
u:=21654387, \quad v:=62845173
$$

Then u is the maximal element in the standard parabolic subgroup $\left\langle s_{1}, s_{3}, s_{4}, s_{5}, s_{7}\right\rangle$ of length $\ell(u)=8$. We have $u \leq v$ and $\ell(v)=16$.

The following is stated without proof in KS97, §8.3]. We give the proof here because it is a good warm-up for the calculation in $G L_{12}$ which we need to perform next.

Proposition 3.2. The singularity of Z_{v} along C_{u} is isomorphic to S.

Proof. If $J:=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ we have (as a matrix of block 2×2-matrices):

$$
N_{u}:=\left\{\left.\left(\begin{array}{cccc}
J & 0 & 0 & 0 \\
A_{1} & 0 & J & 0 \\
A_{2} & J & 0 & 0 \\
A_{0} & A_{3} & A_{4} & J
\end{array}\right) \right\rvert\, A_{i} \in M_{2}(\mathbb{C})\right\}
$$

Now

$$
\dot{v}=\left(\begin{array}{ll|ll|ll|ll}
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

and after some checking one sees that the rank conditions (3.1) reduce to the following equations:

$$
\begin{gather*}
A_{0}=0 \tag{3.4}\\
\operatorname{rank}\left(\begin{array}{cc}
A_{2} & J \\
0 & A_{3}
\end{array}\right) \leq 2, \tag{3.5}\\
\operatorname{rank}\binom{A_{1}}{A_{2}} \leq 1 \tag{3.6}\\
\operatorname{rank}\left(A_{3}\right. \tag{3.7}\\
\left.A_{4}\right) \leq 1 \tag{3.8}\\
\operatorname{rank}\left(\begin{array}{ccc}
A_{1} & 0 & J \\
A_{2} & J & 0 \\
0 & A_{3} & A_{4}
\end{array}\right) \leq 4 .
\end{gather*}
$$

Now

$$
\left(\begin{array}{cc}
A_{2} & J \\
0 & A_{3}
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
-J A_{2} & J
\end{array}\right)=\left(\begin{array}{cc}
0 & I \\
-A_{3} J A_{2} & A_{3} J
\end{array}\right)
$$

and so (3.5) is equivalent to $A_{3} J A_{2}=0$. Similarly one may show that together (3.5) and (3.8) are equivalent to the conditions

$$
\begin{equation*}
A_{3} J A_{2}=0 \text { and } A_{4} J A_{1}=0 \tag{3.9}
\end{equation*}
$$

If we let $K:=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ then (3.6) is equivalent to the conditions:

$$
A_{2} K A_{1}^{t}=0 \text { and } \operatorname{det} A_{1}=\operatorname{det} A_{2}=0
$$

Similarly, (3.7) is equivalent to the conditions

$$
A_{4}^{t} K A_{3}=0 \text { and } \operatorname{det} A_{3}=\operatorname{det} A_{4}=0
$$

Hence if we set

$$
A_{1}^{\prime}:=A_{1}^{t} J, \quad A_{2}^{\prime}:=A_{2} K, \quad A_{3}^{\prime}:=A_{3} J, \quad A_{4}^{\prime}:=A_{4}^{t} K .
$$

Then the relations become

$$
\begin{gathered}
\operatorname{det} A_{i}^{\prime}=0 \text { for } i \in\{1,2,3,4\} \\
A_{2}^{\prime} A_{1}^{\prime}=A_{3}^{\prime} A_{2}^{\prime}=A_{4}^{\prime} A_{3}^{\prime}=A_{1}^{\prime} A_{4}^{\prime}=0
\end{gathered}
$$

This is clearly isomorphic to the Kashiwara-Saito singularity.
3.5. Realisation in $G L_{12}$. We will see how to realise the Kashiwara-Saito singularity as a normal slice in Z_{y} to a Schubert cell C_{x}. This time x and y belong to the same right cell.

Now let $n=12$. Consider the permutations in S_{12} :

$$
x=438721 a 965 c b, \quad y=4387 a 2 c 691 b 5 .
$$

(Remember that we use string notation and $a=10, b=11, c=12$.) The RobinsonSchensted P and Q symbols of x are

$$
P(x)=\begin{array}{llll}
1 & 5 & 9 & b \\
2 & 6 & a & c \\
3 & 7 & & \\
4 & 8 & &
\end{array} \text { and } \quad Q(x)=\begin{array}{cccc}
1 & 3 & 7 & b \\
2 & 4 & 8 & c \\
5 & 9 & & \\
6 & a &
\end{array}
$$

The P and Q symbols of y are

$$
P(y)=\begin{array}{llll}
1 & 5 & 9 & b \\
2 & 6 & a & c \\
3 & 7 & & \\
4 & 8 & &
\end{array} \text { and } \quad Q(y)=\begin{array}{cccc}
1 & 3 & 5 & 7 \\
2 & 4 & 9 & b \\
6 & 8 & & \\
a & c &
\end{array}
$$

In particular, we conclude that x and y are in the same two-sided cell (even the same right cell).

Reduced expressions for x and y are given by:

$$
\begin{aligned}
& x=s_{b} s_{5} s_{6} s_{7} s_{8} s_{9} s_{5} s_{6} s_{7} s_{8} s_{7} s_{1} s_{2} s_{3} s_{4} s_{5} s_{1} s_{2} s_{3} s_{4} s_{3} s_{1} \\
& y=s_{5} s_{6} s_{7} s_{8} s_{9} s_{a} s_{6} s_{a} s_{1} s_{2} s_{3} s_{4} s_{5} s_{6} s_{7} s_{8} s_{9} s_{7} s_{8} s_{4} s_{5} s_{6} s_{7} s_{1} s_{2} s_{3} s_{4} s_{5} s_{3} s_{1}
\end{aligned}
$$

We have $x \leq y, \ell(x)=22$ and $\ell(y)=30$.
Recall the Kashiwara-Saito singularity S from the previous section.
Proposition 3.3. The singularity of Z_{y} along C_{x} is isomorphic to S.
Proof. The normal slice N_{x} to C_{x} inside the full flag variety is given by the space of matrices

$$
\left(\begin{array}{cccccc}
0 & 0 & J & 0 & 0 & 0 \\
J & 0 & 0 & 0 & 0 & 0 \\
B_{1} & 0 & A_{1} & 0 & J & 0 \\
B_{2} & J & 0 & 0 & 0 & 0 \\
B_{3} & B_{5} & A_{2} & J & 0 & 0 \\
B_{4} & B_{6} & B_{7} & A_{3} & A_{4} & J
\end{array}\right)
$$

where $J:=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ as above and the A_{i}, B_{i} are in $M_{2}(\mathbb{C})$. Now, after some checking one sees that the rank conditions (3.1) give that the intersection of N_{x}
and Z_{y} is cut out by the equations:

$$
\begin{gather*}
B_{i}=0 \tag{3.10}\\
\operatorname{rank}\left(\begin{array}{ll}
A_{3} & A_{4}
\end{array}\right) \leq 1, \tag{3.11}\\
\operatorname{rank}\left(\begin{array}{cc}
0 & A_{1} \\
J & 0 \\
0 & A_{2}
\end{array}\right) \leq 3 \quad \Leftrightarrow \quad \operatorname{rank}\binom{A_{1}}{A_{2}} \leq 1, \tag{3.12}\\
\operatorname{rank}\left(\begin{array}{cc}
A_{2} & J \\
0 & A_{3}
\end{array}\right) \leq 2, \tag{3.13}\\
\operatorname{rank}\left(\begin{array}{cccc}
0 & A_{1} & 0 & J \\
J & 0 & 0 & 0 \\
0 & A_{2} & J & 0 \\
0 & 0 & A_{3} & A_{4}
\end{array}\right) \leq 6 \quad \Leftrightarrow \quad \operatorname{rank}\left(\begin{array}{ccc}
A_{1} & 0 & J \\
A_{2} & J & 0 \\
0 & A_{3} & A_{4}
\end{array}\right) \leq 4 . \tag{3.14}
\end{gather*}
$$

Looking at the proof of Proposition 3.2 it is now clear that $N \cap Z_{y} \cong S$, the Kashiwara-Saito singularity.

References

[AR14a] P. Achar and S. Riche. Modular perverse sheaves on flag varieties I: tilting and parity sheaves. preprint arXiv:1401.7245, 2014.
[AR14b] P. Achar and S. Riche. Modular perverse sheaves on flag varieties II: Koszul duality and formality. preprint arXiv:1401.7256, 2014.
[BB85] W. Borho and J.-L. Brylinski. Differential operators on homogeneous spaces. III: Characteristic varieties of Harish Chandra modules and of primitive ideals. Invent. Math., 80:1-68, 1985.
[BBD82] A. Bĕlinson, J. Bernstein, and P. Deligne. Faisceaux pervers. In Analyse et topologie sur les espaces singuliers, I (Luminy, 1981), volume 100 of Astérisque, pages 5-171. Soc. Math. France, Paris, 1982.
[BCP97] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user language. J. Symbolic Comput., 24(3-4):235-265, 1997. Computational algebra and number theory (London, 1993).
[EW13] B. Elias and G. Williamson. Soergel calculus. preprint arXiv:1309.0865, 2013.
[Ful92] W. Fulton. Flags, Schubert polynomials, degeneracy loci, and determinantal formulas. Duke Math. J., 65(3):381-420, 1992.
[Gab82] O. Gabber. Equidimensionalité de la variété caractéristique. Exposé de O. Gabber redigé par T. Levasseur, 1982.
[HN12] R. B. Howlett and V. M. Nguyen. W-graph ideals. J. Algebra, 361:188-212, 2012.
[HN13] R. Howlett and V. M. Nguven. W-graph magma programs. software available at http://www.maths.usyd.edu.au/u/bobh/magma/, 2013.
[HW14] X. He and G. Williamson. Soergel calculus and Schubert calculus. in preparation. 2014.
[JMW09] D. Juteau, C. Mautner, and G. Williamson. Parity sheaves. preprint arXiv:0906.2994, to appear in JAMS, 2009.
[Jos84] A. Joseph. On the variety of a highest weight module. J. Algebra, 88:238-278, 1984.
[Jut09] D. Juteau. Decomposition numbers for perverse sheaves. Ann. Inst. Fourier (Grenoble), 59(3):1177-1229, 2009.
[KL80a] D. Kazhdan and G. Lusztig. A topological approach to Springer's representations. Adv. Math., 38:222-228, 1980.
[KL80b] D. Kazhdan and G. Lusztig. Schubert varieties and Poincaré duality. In Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), Proc. Sympos. Pure Math., XXXVI, pages 185-203. Amer. Math. Soc., Providence, R.I., 1980.
[KS97] M. Kashiwara and Y. Saito. Geometric construction of crystal bases. Duke Math. J., 89(1):9-36, 1997.
[KT84] M. Kashiwara and T. Tanisaki. The characteristic cycles of holonomic systems on a flag manifold related to the Weyl group algebra. Invent. Math., 77:185-198, 1984.
[Mel93] A. Melnikov. Irreducibility of the associated varieties of simple highest weight modules in $\mathfrak{s l}(n)$. C. R. Acad. Sci. Paris Sér. I Math., 316(1):53-57, 1993.
[Soe97] W. Soergel. Kazhdan-Lusztig polynomials and a combinatoric[s] for tilting modules. Represent. Theory, 1:83-114 (electronic), 1997.
[Soe00] W. Soergel. On the relation between intersection cohomology and representation theory in positive characteristic. J. Pure Appl. Algebra, 152(1-3):311-335, 2000.
[Spr82] T. A. Springer. Quelques applications de la cohomologie d'intersection. In Bourbaki Seminar, Vol. 1981/1982, volume 92 of Astérisque, pages 249-273. Soc. Math. France, Paris, 1982.
[Tan88] T. Tanisaki. Characteristic varieties of highest weight modules and primitive quotients. Representations of Lie groups: analysis on homogeneous spaces and representations of Lie groups, Proc. Symp., Kyoto/Jap. and Hiroshima/Jap. 1986, Adv. Stud. Pure Math. 14, 1-30 (1988)., 1988.
[VW12] K. Vilonen and G. Williamson. Characteristic cycles and decomposition numbers. preprint arXiv:1208.1198, to appear in Math. Res. Let., 2012.
[Wil12] G. Williamson. Modular intersection cohomology complexes on flag varieties. Math. Z., 272(3-4):697-727, 2012. (with an appendix by Tom Braden).
[WY08] A. Woo and A. Yong. Governing singularities of Schubert varieties. J. Algebra, 320(2):495-520, 2008.
[WY12] A. Woo and A. Yong. A Gröbner basis for Kazhdan-Lusztig ideals. Amer. J. Math., 134(4):1089-1137, 2012.

Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
E-mail address: geordie@mpim-bonn.mpg.de
URL: http://people.mpim-bonn.mpg.de/geordie/

[^0]: ${ }^{1}$ For the perversity p, see Jut09.

